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ABSTRACT

This work evaluates the performance of the assimilation of total lightning data within a three-dimensional

variational (3DVAR) framework for the analysis and short-term forecast of the 24 May 2011 tornado outbreak

using the Weather Research and Forecasting (WRF) Model at convection-allowing scales. Between the lifted

condensation level and a fixed upper height, pseudo-observations for water vapor mass first are created based on

either the flash extent densities derived from Oklahoma Lightning Mapping Array data or the lightning source

densities derived from the Earth Networks pulse data, and then assimilated by the 3DVAR system. Assimilation

of radar datawith 3DVARand a cloud analysis algorithm (RAD)also are performed as a baseline for comparison

and in tandem with lightning to evaluate the added value of this lightning data assimilation (LDA) method.

Given a scenario wherein the control experiment without radar or lightning data assimilation fails to accu-

rately initiate and forecast the observed storms, the LDA and RAD yield comparable short-term forecast

improvements. TheRADalone produces storms of similar strength to the observations during the first 30min of

forecast more rapidly than the LDA alone; however, the LDA is able to better depict individual supercellular

features at 1-h forecast. When both the lightning and radar data are assimilated, the 30-min forecast showed

noteworthy improvements over RAD in terms of the model’s ability to better resolve individual supercell

structures and still maintained a 1-h forecast similar to that from the LDA. The results chiefly illustrate the

potential value of assimilating total lightning data along with radar data.

1. Introduction

Given the potential threat to life and property posed

annually by high-impact weather events such as flash

floods, hail, tornadoes and lightning, it is critical to

provide timely, accurate forecasts of these events. While

forecasts of severe weather have improved in recent

years, forecasting these events at the cloud scale with

desired timeliness and accuracy still remains a challenge,

because it involves resolving nonlinear interactions

among many different physical processes over a large

range of scales (e.g., Stensrud et al. 2009). Various

methods of data assimilation have been developed using

multiple data sources to try to improve forecasts and re-

duce false alarms (e.g., Park and Xu 2013).
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Much of the data assimilation research thus far has

examined assimilation of various observations of deep

convection, especially from the National Weather Ser-

vice (NWS) operational Weather Surveillance Radar–

1988 Doppler (WSR-88D) (e.g., Evensen 1994, 2003;

Houtekamer and Mitchell 1998; Zhang 2005; Zhang

et al. 2009; Aksoy et al. 2009; Godinez et al. 2012). In

some areas of the United States, however, coverage by

the WSR-88D network is poor or absent (e.g., Zhang

et al. 2011). This is the case especially in mountainous

terrain having beam blockage and in oceanic regions

beyond the range of coastal radars. In these circum-

stances, lightningmapping data can serve as an indicator

of deepmoist convection for assimilation into numerical

weather predictionmodels. Recent works (Mansell et al.

2007; Fierro et al. 2012a, hereafter F12a; Fierro et al.

2014, hereafter F14; Fierro et al. 2015, hereafter F15;

Mansell 2014) demonstrated that assimilating lightning

data improves short-term forecasts as much as assimi-

lating radar reflectivity does. In areas in which the spa-

tiotemporal coverage of the WSR-88D network is good,

however, the added value of lightning data assimilation

(LDA) to forecasts based on assimilating radar data is

not yet well established. Surface lightning detection

networks already provide good coverage in many regions

with poor radar coverage, and the Geostationary Light-

ning Mapper (GLM; Goodman et al. 2013) on board the

Geostationary Operational Environmental Satellite ‘‘R’’

series (GOES-R;Gurka et al. 2006;Goodmanet al. 2013),

planned for launch in fall 2016, provides additional cov-

erage over land and oceans. Thus, incorporating lightning

data substantially extends the uniformity and range of

coverage for assimilating a measure of deep convection.

Thus far, relatively few data assimilation studies have

devoted their attention to lightning data. Most LDA

studies have employed data from lightning mapping sys-

tems that detected mostly cloud-to-ground (CG) flashes

and usedmesoscalemodels with parameterized convection

(i.e., Jones andMacpherson 1997a,b; Alexander et al. 1999;

Chang et al. 2001; Papadopoulos et al. 2005; Pessi and

Businger 2009). Observational studies and storm simula-

tions, however, have both provided considerable evidence

that total lightning flash rates are much better correlated

than CG flash rates with various measures of intensifying

deep convection, such as updraft mass flux and graupel

volume (e.g., MacGorman et al. 1989; Carey and Rutledge

1998; MacGorman et al. 2005; Wiens et al. 2005; Kuhlman

et al. 2006; Fierro et al. 2006; Deierling and Petersen 2008;

MacGorman et al. 2011). Furthermore, intracloud flashes

(ICs) generally outnumber CGs by a factor of 2–3 in

typical single or multicell thunderstorms (Boccippio et al.

2001) to.10:1within some severe deep convective storms

and supercells (e.g., MacGorman et al. 1989; 190–192 of

MacGorman andRust 1998). Thus, total lightning activity

provides a much higher rate of observations and few

studies have begun developing techniques for assimilating

total lightning intomesoscalemodels using parameterized

convection (Mansell et al. 2007) or using sufficient grid

resolution to explicitly allow convection (F12; F14; F15;

Marchand and Fuelberg 2014; Mansell 2014; Allen et al.

2016). Generally speaking, these LDA studies have em-

ployed an empirical relationship between lightning and

other diagnosed quantities, such as rainfall, latent heating,

or relative humidity to force or modify parameterized

convection at the observed lightning locations.

The approach of the present study is inspired by earlier

LDAefforts based on an initial concept put forth inFierro

and Reisner (2011) and subsequently refined in F12a and

F14. Both F12a and F14 employed a simple, computa-

tionally efficient direct insertion (nudging) method for

assimilating total lightning data from the Earth Networks

Total Lightning Network (ENTLN) at cloud resolving

scales. At observed lightning locations within individual

grid columns, their nudging method imposed incremental

increases of water vapor mass (qy) toward saturation with

respect towater within a confined layer and, thus, forced a

local enhancement of thermal buoyancy (Houze 1993;

Braun 2002; Fierro et al. 2012b). Over a large range of

forecast days, F15 showed that this lightning nudging

method improved the analysis and short-term forecast of

accumulated precipitation, with the best improvements

obtained for mesoscale outflow-dominated systems.

Prior assimilation efforts using variational methods

within convection-allowing models have shown that as-

similating other sources of data such as radar reflectivity

or cloud information through pseudo-observed relative

humidity (or qy) also resulted in noteworthy improve-

ments in the short-term forecasts of accumulated pre-

cipitation at parameterized-convection scales (.10km;

e.g., Marécal and Mahfouf 2002, 2003; Lopez and Bauer

2007) and convection-allowing scales (Caumont et al.

2010). No previous studies, however, have implemented

assimilation of lightning data or a combination of light-

ning and radar data within a 3DVAR framework. The

present study extends previous LDA techniques to in-

corporate lightning assimilation directly into a variational

framework. To achieve this, an LDA method conceptu-

ally similar to that of Fierro and Reisner (2011) has been

implemented within the three-dimensional variational

data assimilation (3DVAR) system initially developed

for the Advanced Regional Prediction System (ARPS)

(Gao et al. 1999; Xue et al. 2001, 2003; Gao et al. 2004; Hu

et al. 2006a,b; Stensrud and Gao 2010; Ge et al. 2010,

2012; Gao and Stensrud 2012; Gao et al. 2013).

A major motivation for this work is the imminent

availability of GLM total lightning data over most of the
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American hemisphere. This study makes use of light-

ning data detected by the ENTLN and the Oklahoma

Lightning Mapping Array (OK-LMA; MacGorman

et al. 2008). Because both the ENTLN and OK-LMA

are able to detect a moderate to high fraction of the IC

flashes in central Oklahoma (F12a; MacGorman et al.

2008), the density data derived from each of these net-

works are reasonable proxies for the total lightning

densities expected to be delivered by the GLM. The

assimilated lightning metric derived from ENTLN data

will be referred to as the ENTLN source density (ESD)

(similar to what was used by F12a) and the lightning

metric derived from OK-LMA data as the flash extent

density (FED). The present study evaluates the impact

of assimilating either of these two-dimensional gridded

total density rates in a 3DVAR framework within a

convection-allowing model.

The case examined is the severe weather outbreak of

24–25May 2011, which had a total of 12 tornado reports in

central Oklahoma (cf. Fig. 1 of F12a; Kosiba et al. 2012;

Wurman and Kosiba 2013; Tanamachi et al. 2015; Houser

et al. 2015). Half of these tornadoes were rated [enhanced

Fujita (EF) scale] EF-3 or greater, and two were rated

EF-4 as they tracked dangerously close to the Oklahoma

City metropolitan area. The reader is invited to consult

F12a for more details on the synoptic situation of this day.

The first rationale for selecting this case is the challenging

nature of this forecast (F12a), which is reexamined here

using different datasets for model initialization (described

below in section 3). In particular, this work will highlight

how the performance of the model is affected when either

lightning and/or radar data (radial winds and reflectivity

fields) are assimilated. The second rationale is the avail-

ability of three-dimensional lightning data from the OK-

LMA over the area of interest (MacGorman et al. 2008).

The lightning and radar data used for the assimilation and

validation are briefly described in section 2. The setup of

the model simulation and data assimilation procedures

are introduced in section 3. The results are presented in

section 4, followed by the conclusions in section 5.

2. Data used for assimilation and validation

The first source of lightning data for the present study

is the ENTLN broadband (1–12MHz) network, which

as of 2011 consisted of about 150 ground-based sensors

over the contiguous United States (CONUS). The

ENTLN has a detection efficiency of about 40%–50%

for ICs and over 95% for CGs over the study region in

the western two-thirds of Oklahoma, with an accompa-

nying location accuracy varying from tens of meters in

dense areas of the network to about 200m elsewhere

(e.g., see Fig. 6 in F12a). Because, as noted in F12a, the

ENTLN occasionally locates more than one pulse or

source per flash, the ENTLN-derived data used for the

assimilation in this work are referred to as source density

rates instead of flash density rates.

The second source of lightning data is the OK-LMA

very high-frequency network (Fig. 1), which is able to

detect individual sources during the propagation of a

lightning channel in three dimensions (Rison et al. 1999;

Thomas et al. 2004; MacGorman et al. 2008). As of May

2011, the OK-LMA consisted of 11 stations in central

Oklahoma (MacGorman et al. 2008; Griffin et al. 2014).

Each sensor detects very high-frequency radio emissions

from both IC and CG flashes. The system then uses the

time-of-arrival method (six or more stations) to compute

the location and time at which the sferics were produced

by a developing lightning channel (Rison et al. 1999;

Thomas et al. 2004; MacGorman et al. 2008). The OK-

LMA location accuracy varies from tens of meters at the

center of the network to about 500m at a radius of about

100km. Because of the limited number of OK-LMA

stations, the total coverage of this network is limited

relative to the national coverage of ENTLN. Over the

study region, however,OK-LMA is able to detect the vast

majority (i.e., $90%) of all the flashes (i.e., ICs 1 CGs)

in three dimensions with a source location accuracy

averaging 100m. Because it maps the three-dimensional

structure of individual flashes, it is possible to derive

FEDs, which in contrast to ESDs, reflect the spatial

extent of individual flashes. FED serves as a more ac-

curate proxy for the data anticipated by GLM, which

consist of FEDs derived from luminous pixel events that

are grouped into individual lightning flashes at a resolu-

tion of approximately 8kmover CONUS (Goodman et al.

2013). Thus, emphasis will be placed on the assimilation of

OK-LMA-derived FEDs.

The present 3DVAR code has capability to assimi-

late traditional observations as well as remote sensing

data including three-dimensional radar reflectivity and

radial velocity observations from the WSR-88D net-

work. Following F12a and F14, the modeled reflectivity

fields are evaluated against observed radar reflectivity

fields from the three-dimensional National Mosaic and

Multisensor Quantitative Precipitation Estimation

product from NSSL (NMQ; Zhang et al. 2011), which

were made available in 5-min increments back in 2011.

The horizontal grid spacing of the NMQdataset is 0.018
and the vertical grid spacing stretches from 250m be-

tween z5 500m and 3 kmMSL, to 500m between z5 3

and 9 km, and to 1 km above that until 18 km.

Last, the simulated accumulated precipitation fields

were evaluated against the National Centers for En-

vironmental Prediction’s stage-IV multisensor hourly

rainfall accumulation estimates (Baldwin and Mitchell
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1997) made publicly available by the Earth Observing

Laboratory.1 Despite being a dataset widely used to eval-

uate forecast performance, it does suffer from several

limitations including radars being out of calibration, rain

gauges being clogged, and partial beam blockages due to

buildings and terrain. To compare model and observa-

tions, the hourly stage-IV data were remapped from its

native 4-km polar stereographic grid onto the 3-km Mer-

cator grid of the simulation domain (Fig. 1).

3. Simulations setup

a. Model grid and physics configuration

The forecast model used in this study is the three-

dimensional compressible nonhydrostatic WRF Model

(version 3.6.1) with Advanced Research WRF dynamic

solver (WRF-ARW; Skamarock and Klemp 2008).

Following the philosophy of F14 and F15, the overall

physics and grid configuration are similar to that of the

experimental real-time CONUS convection-allowing

model forecasts conducted by the National Severe

Storms Laboratory (NSSL-WRF; Kain et al. 2010). The

main differences between the current setup and that of

NSSL-WRF are the use of a 3-km grid in lieu of 4 km

and the smaller size of the simulation domain.

In this study, the simulations are conducted on one

single domain with a uniform horizontal grid spacing of

3km and horizontal dimensions in grid points of 801 3
601 (Fig. 1). The stretched vertical grid has 35 levels with

its top at 100hPa (;15.5km) and the computational time

step is 15 s. The dataset utilized to derive initial and time-

dependent lateral boundary conditions employs the

hourly, 13-kmRapidUpdateCycle (RUC;Benjamin et al.

2004, now known as the Rapid Refresh or RAP since

2012) analysis at 2000 UTC 24 May 2011 and subsequent

forecast data for a 4-h period. The simulations are ter-

minated at 0000 UTC 25 May, because this study focuses

chiefly on the analysis and 1–3-h forecast of the tornadic

cells that formed in the western two-thirds of Oklahoma

and does not consider later times when these individual

supercells merged into a quasi-linear convective system

(F12a). Further motivations for not focusing on later

forecast times are that (i) the performance of convection-

allowing data assimilationmethods is usually confined to

the first 4–8 h of the forecast owing to error growth in

the large-scale environment progressively saturating the

model solution (e.g., F15 and studies cited within) and (ii)

the overall poor quality of the lightning data from the

OK-LMAat longer ranges outside the body ofOklahoma.

FIG. 1. Sketch of the simulation domain, D01 (3-km horizontal grid spacing) with the black

dots denoting the locations of the WSR-88D sites used and tested in the ARPS 3DVAR code

herein. The gray circle indicates the area where the lightning sources’ location accuracy is

#300m for the stations composing the OK-LMA network as of May 2011. The U.S. states are

indicated by their usual abbreviations.

1 See http://data.eol.ucar.edu.
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The use of RUC data as convection develops in the

observations is intentional to demonstrate that both

LDA and radar data assimilation can force the initia-

tion of observed convection. Although there is no

model spinup prior to performing the data assimilation

(DA), starting the DA when convection is developing

in the target area in the observations also facilitates the

qualitative and quantitative analysis of the impacts of

the respective DA procedures.

It is also relevant to mention that the model top in our

simulation could not exceed 100hPa because the RUC

files employed herein do not contain data above that

level. Although this is admittedly too shallow to accu-

rately resolve the vertical extent of deep moist convec-

tion, the results show that this dataset is still adequate to

address the salient goal of this study raised in (ii) above.

One additional limitation of this RUC dataset is the ab-

sence of 2D soil arrays required to activate the surface

layer parameterization inWRF. Because, however, these

simulations were initialized near the peak hours of solar

heating (i.e., 2000 UTC), sensitivity tests (not shown)

employing another data source that includes the 2D soil

arrays (i.e., 12-km North American Mesoscale Forecast

System dataset), revealed insignificant differences in the

evolution of the forecast convection and surface variables

such as temperature and moisture.

As in NSSL-WRF, the simulations employ the single-

moment 6-class bulk microphysical scheme (WSM6) of

Hong and Lim (2006). The six bulk species are rain, cloud

water, cloud ice, snow, graupel, and hail. The boundary

layer is parameterized following the 1.5-order closure

Mellor and Yamada (1982) turbulence kinetic energy

scheme adapted by Janjić (1994) with Monin–Obukhov–

Janjić similarity theory for the subgrid-scale turbulence

processes (Chen et al. 1997). Atmospheric radiation is

parameterized followingDudhia (1989) for the shortwave

and theRapidRadiative TransferModel (RRTM) for the

longwave (Mlawer et al. 1997).

b. Data assimilation procedures

1) RADAR

The assimilation of radar data in the present study al-

ways includes both radial velocity and reflectivity in-

formation. In F14, the storm-scale 3DVAR system could

only be directly used with the ARPS model. To use this

3DVAR package with WRF, F14 made use of two sep-

arate executables that interpolated the 3DVAR analysis

variables back and forth between the WRF and ARPS

model grids. In this study, however, a direct interface for

the WRF Model has been developed (Zhuang et al.

2016), which obviates the need to interpolate the

3DVAR analyses back and forth. The data from each

radar are quality controlled (e.g., dealiasing radial ve-

locity, removing nonmeteorological scatterers) and in-

terpolated onto the WRF grid (for thinning purpose)

before the DA. When reflectivity data from multiple ra-

dars overlap at a given grid point, the largest value is

chosen. For each 3DVARanalysis, two passes are used in

the analysis with horizontal (vertical) decorrelation

length scales for all control variables set to 24 (12) km,

respectively. Using an additional pass for the 3DVAR

with smaller decorrelation length scales is designed to

extract more convective-scale information from radar

data. The background error variances for the model

variables are derived from statistics of RUC 3-h forecasts

over several years and the background error correlations

are modeled by a recursive filter (Purser et al. 2003a,b).

The radial velocity data are used in the 3DVAR analysis

to adjust the three Cartesian components of the wind

field. Both potential temperature u and pressure (not only

surface pressure) are part of the control variables, and

these fields can also be changed if other types of obser-

vations such asMesonet data were also assimilated. There

is no cross correlation betweenwind field, u, and pressure.

More detail of this version of 3DVAR with WRF in-

terface can be found in Zhuang et al. (2016). Radar re-

flectivity measurements are used in the cloud analysis

to adjust the hydrometeor variables (i.e., cloud water,

cloud ice, rain, snow, and graupel/hail mixing ratios)

and u (Albers et al. 1996; Zhang et al. 1998; Brewster

2002; Hu et al. 2006a,b) following the 3DVAR analysis.

Asmentioned in section 3b(2) below, pseudo-observations

for qy are derived from the lightning density rates rather

than being provided by the cloud analysis. The cloud

analysis has an option to generate pseudo-qy observations

for (high) relative humidity based on radar data, which

have not been activated in the base experiments to better

dissociate/isolate the impact of the LDA (Table 1). To

gauge the impact of radar-derived pseudo-qy observations,

however, two additional experiments were performed

with the latter option activated (Table 1).

The use of a cloud analysis to adjust hydrometeor

variables and a 3DVAR analysis to adjust the kine-

matic state with radial velocities was intentional to

mirror an arguably more standard setup. Given a radar

DA setup using all the available data provided by the

radars and despite the lower density information con-

tained in 2D lightning datasets relative to volumetric

radar scans, the LDA still is able to force convection

near the observed locations. To better underscore the

effectiveness of the assimilation procedures, all the

experiments in this study employ only one 3DVAR

analysis (namely at 2000 UTC).

As highlighted in section 2, the 3DVAR analysis in

the present study assimilates WSR-88D level-II data

NOVEMBER 2016 F I ERRO ET AL . 4377

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:49 PM UTC



obtained from the National Centers for Environmental

Information2 (e.g., F14). Radar reflectivity and radial ve-

locity data have been utilized from KTLX (Oklahoma

City, Oklahoma), KFDR (Frederick, Oklahoma), KVNX

(Vance Air Force Base, Oklahoma), and KINX (Tulsa,

Oklahoma)(Fig. 1). These four sites provide a reasonable

coverage of the storms during the target period of analysis,

particularly above ;3km MSL where the scan volumes

overlap (Zhang et al. 2011; Gao et al. 2013). For this rea-

son, radar reflectivity fields in the observations and simu-

lations are shown at 4km MSL. Observed reflectivity

values are thresholded at 20dBZ for altitudes below

1.5km MSL and at 15dBZ at higher altitudes in order to

reduce unwanted influence of weak radar returns or non-

meteorological scatterers.

2) LIGHTNING

To assimilate lightning data within the ARPS 3DVAR

package described in section 3b(1), the raw data origi-

nating from ENTLN and OK-LMA are respectively

converted into gridded density rates (per 3-km grid cell

herein). Given the latitude and longitude points of the

WRF grid, the conversion of the ENTLN source data

(given in the format of ‘‘time, latitude, longitude’’) into

two-dimensionalESDrates (per 10min herein) is relatively

straightforward. The conversion of the three-dimensional

very high frequency (VHF) sources of the OK-LMA into

two-dimensional FED rates, however, first requires spatial

and temporal assumptions to group source points into in-

dividual flashes. Following Lund et al. (2009), the VHF

lightning data are grouped into individual flashes using

criteria based on the distance (500m) and time (250ms) of

each mapped VHF events from previous VHF events

(MacGorman et al. 2008). Only flashes containing more

than 10 VHF sources are used in the assimilation experi-

ments. It is relevant to highlight that when flash rates are as

large as those produced by the supercells on 24 May, the

estimate of flash rate using this algorithm can be sensitive

to relatively modest changes in the aforementioned spa-

tiotemporal thresholds. Thus, the LMA-derived flash rates

should be considered as approximate (MacGorman et al.

2008). The flashes are then binned into 10-min intervals on

the 3-km model grid (Fig. 1) to yield the final FED prod-

uct. A flash is counted once within a given grid cell or pixel

if any portion of the lightning flash entered the area.

TABLE 1. The left column lists the nomenclature/abbreviations used for all the simulations/experiments analyzed in this study. The

second column from the left briefly describes the type of experiments. The second column from the right indicates the type of data that

were assimilated with ‘‘dBZ’’ standing for radar reflectivity and ‘‘Vr’’ for radial velocity. The right column shows which model variable(s)

is (are) impacted by the respective assimilation experiments with the symbols used to identify those variables bearing their usual meaning.

For convenience, the experiments are listed in the order they appear in the text (as in Fig. 3).

Experiment Description Data assimilated

Model variables

impacted

CTRL Control run None None

OKLMA Lightning assimilation run. OK-LMA flash extent

density rates

qy (LCL-15 km)

RAD Radar data assimilation run Vr and dBZ qr, qg, qi, qs, qh, u, y, w, u

RAD 1 OKLMA Lightning 1 radar assimilation run OK-LMA flash extent

density rates, Vr, and dBZ

qy (LCL-15 km), qr, qg, qi, qs,

qh, u, y, w, u

ENTLN Lightning assimilation run ENTLN source density rates qy (LCL-15 km)

RAD-noVR Radar data assimilation run

without Vr

dBZ qr, qg, qi, qs, qh, u

RAD-noVR 1
OKLMA

Radar data assimilation run

without Vr

OK-LMA flash extent

density rates and dBZ

qy (LCL-15 km), qr, qg, qi,

qs, qh, u

RAD-noCLDAN Radar data assimilation run

without the cloud analysis

Vr u, y, and w

RADQV As in RAD but with qy adjustments

by the cloud analysis

Vr and dBZ qy, qr, qg, qi, qs, qh, u, y, w, u

RAD45dBZ RAD experiment mimicking

the LDA procedure for

OKLMA (see text)

Vr and dBZ qy, qr, qg, qi, qs, qh, u, y, w, u

OKLMA ztop5km Lightning assimilation run OK-LMA flash extent density rates qy (LCL-5 km)

2 See http://www.ncdc.noaa.gov/oa/radar/radardata.html.
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As mentioned in the introduction, the LDA pro-

cedure implemented in the 3DVAR code follows the

same philosophy as in Fierro and Reisner (2011) and

F12a. At observed lightning locations (i.e., grid col-

umns), the LDA sets its pseudo-observation qy to its

saturation value over water (qysat) in the layer between

the lifted condensation level (LCL, a surrogate for cloud

base) and an assumed fixed height of 15km. Using a fixed

height, however, does not take into account seasonal

or geographical variations. Because relative humidity is

proportional to the ratio between qy and qysat, creating

pseudo-observed fields whereby the relative humidity 5
100% or qy 5 qysat at observed lightning locations is

equivalent. For simplicity, the qy increase herein is not

made proportional to the observed gridded density rate

or inversely proportional to the simulated graupel mixing

ratio at that grid point as in F12a, but instead follows the

simpler methodology of Fierro and Reisner (2011). Be-

cause low values of FED and ESD within deep convec-

tive storms often are associated with lightning channels

extending into their horizontally extensive anvil clouds

(e.g., Fig. 2; Weiss et al. 2012), a lower cutoff value of 50

FED and 10 ESD [(10min)21] is set to avoid promoting

the formation of unrealistically wide updrafts. In other

words, observed density rates lower than the cutoff

threshold simply are interpreted as nonupdraft areas by

the LDA and, hence, the pseudo-qy observations are not

created. A future implementation could have an adjust-

able cutoff threshold to allow an impact on low flash rate

storms or to capture the early stages of potentially severe

storms (when density rates are still low).

After the density rates (i.e., 10-min FED or ESD) have

been computed, the next procedure converts these into

three-dimensional qy pseudo-observations via the fol-

lowing procedure: Wherever the density rate is below the

threshold, the pseudo-qy in the corresponding grid column

is not created, whereas at observed lightning locations

meeting or exceeding the aforementioned thresholds,

pseudo-qy is set to its corresponding saturation value with

respect towater between theLCLand a fixed upper height.

For each grid pointwithin this prescribed layer, the pseudo-

qy (i.e., qysat) is computed using the model background

temperature and pressure at that grid point. Then, these

pseudo-qy observations are assimilated through the

3DVAR analysis by minimization of the so-called cost

function, which includes the background term and obser-

vation term for qy. The observation error for qy was set to

33 1023kgkg21 and the background error for qy is set to

1022kgkg21.Asmentioned in section 3b(1), the horizontal

(vertical) decorrelation length scales for all control vari-

ables, including qy, are set to 24 and 12km, respectively.

In contrast to Fierro and Reisner (2011) and F12a,

where lightning data were continuously assimilated

over a given period (e.g., 2 h in F12a), the lightning data

in all the experiments in this study only are assimilated

at one single time (i.e., 2000UTC). In other words, while

the incremental increase in qy in F12a is maintained at

each computational time step throughout each 10-min

interval within a 2-h period, the qy increase in the present

study is applied only once. The assimilation and model

initialization time of 2000 UTC was selected because the

lightning observations are associated with the develop-

ment of the tornadic supercell thunderstorms in north-

west Oklahoma (F12a). The 10-min ESD or FED rate

fields that are assimilated at 2000 UTC are shown in

Figs. 2a and 2c, respectively. The LDA includes the

densities accumulated for the 10-min period prior the

assimilation time (i.e., between 1950 and 2000 UTC for

the 3DVAR initialization).

4. Results

In this section, the performance of the 3DVAR as-

similation of FED data from the OK-LMA (denoted

OKLMA), radar data (RAD), or combined (RAD 1
OKLMA) first are evaluated against the observations and

against a control run (CTRL) that assimilated no data. An

additional 3DVAR experiment assimilating ENTLN-

derived source density data also is shown for compari-

son. All the experiments presented in this study are listed

in Table 1. For all the simulations herein, this analysis fo-

cuses on the tornadic supercells that developed in north-

west Oklahoma (cf. Fig. 1 in F12a) and does not place

emphasis on the observed remote convection that oc-

curred beyond the range of the OK-LMA (Figs. 1 and 2).

During the first hour of simulation at 2100UTC, CTRL

exhibits weak and localized radar echoes in northwest

Oklahoma (cf. Figs. 3a,b; 4a,b; and 4d,e), owing to poor

resolution of boundary layer processes that force con-

vection initiation in F12a and also because of the longer

time required for modeled storms to develop without

assimilation. At 2100 UTC, those weak radar echoes in

CTRLare associated with only weak (,8ms21) midlevel

(4km) vertical velocities and no appreciable vertical vor-

ticity (i.e., ,1023 s21, Fig. 3b). By about 2h 30min in the

forecast (i.e., 2230 UTC), however, CTRL is able to re-

produce some of the observed storms in central and south-

centralOklahomawhilemissing other storms farther south

near the Oklahoma–Texas border (not shown).

Assimilating only the FED derived from OK-LMA

data noticeably improved the representation of the

convection, as evidenced by the presence of supercell-

storm objects in northwest Oklahoma at 2100 UTC

(arrows in Figs. 3a–c). Since the introduction of water

vapor mass at observed lightning locations helps ac-

celerate the development of convection, the evolution
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of the observed storms in north-central Oklahoma is

better depicted throughout the first 1 h 30min of the

forecast (arrows in Figs. 5a–f). Note that despite this

improvement, the 1-h forecast still misses some storms in

west-central Oklahoma. In the OKLMA experiment,

most of the storms thatwere promoted by the assimilation

in northwest Oklahoma appear to exhibit classic radar-

observable supercellular traits such as an elongated ‘‘V

shape’’ and hook echo appendage (arrows in Figs. 5e,f)

associated with pronounced, collocated low-level vertical

vorticity and updraft cores (arrows in Fig. 3c). The ex-

periment assimilating only the ENTLN-derived source

densities revealed forecast improvements that were sim-

ilar overall to those in OKLMA (cf. Figs. 3c,f).

When radar data (i.e., radial winds and reflectivity,

Table 1) are assimilated, the improvements in the

FIG. 2. (a),(b) ENTLN-derived 10-min source densities [(9 km2)21] up to the indicated time, where 2000 UTC

corresponds to the analysis time in the base experiments. (c),(d) As in (a),(b), but for the OK-LMA-derived

10-min flash extent densities [(9 km2)21]. Because of the limited detection range of OK-LMA, the observations

mainly are confined to the state of Oklahoma at those times. To facilitate comparison, both lightning metrics use

the same color scale shown at the bottom. By design, (a) and (c) show the lightning data that are assimilated. To

focus on the tornadic storms impacting the Oklahoma City metro area, the individual panels also depict the

geographical area of the analysis domain used throughout the analysis. The zoomed analysis domain is centered

over the tornadic supercells that formed in northwest Oklahoma between 1930 and 2000 UTC. The dashed gray

box in (b) and (d) highlights the boundaries of the subdomain of Fig. 3.
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FIG. 3. Horizontal cross sections at 2100 UTC (1-h forecast) over the subdomain highlighted in Figs. 2b and

2d of radar reflectivity (dBZ) at z5 4 kmMSL overlain with the 8m s21 vertical velocities (blue contour) and

vertical vorticities of 1023 s21 (solid black) for (a) the NMQobservations and (b)–(l) all the experiments listed

and described in Table 1. For convenience, the experiments in (b)–(l) are listed in the order they appear in the

text, which is the same as in Table 1. Black arrows highlight the convective elements specifically discussed in

the text and the horizontal black line shows the respective locations of the vertical cross sections shown in

Fig. 6. As can be seen in this figure, the location of the vertical cross sections was purposively chosen to be

slightly north of the main updraft of one particular cell to simultaneously capture a portion of its anvil and

convective core. This convective cell was selected because all DA runs were able to reproduce it.
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representation of the convection at the 1-h forecast over

CTRL are overall similar, but differ from those in

OKLMA.At the 1-h forecast, RAD reveals a more solid

line of storms compared to fairly discrete cells for

OKLMA (cf. arrows in Figs. 3c,d) and for the obser-

vations (Fig. 3a). The similarity between the fore-

casted and observed morphologies of radar echoes in

this line of storms arguably worsens later in the fore-

cast period (e.g., Fig. 5i). As might be expected, these

differences are also reflected in the number and dis-

tribution of updrafts; OKLMA produces three distinct

updrafts in northwest Oklahoma in the 30-min (not

shown) and 1-h forecasts (cf. arrows in Fig. 3c), while

RAD produces more than twice as many updrafts, with

only the southernmost storm exhibiting noticeable

supercellular characteristics (cf. arrows in Figs. 3d and 5h).

At the 30-min and 1-h forecasts, both OKLMA and

RAD miss some of the observed storms in central OK

(cf. Figs. 5b,c; 5e,f; and 5h,i).

When both the OKLMA-derived FED rates and radar

data are assimilated, the representation of the convection

at the 30-min forecast (2030 UTC) is further improved

over assimilating each type of data separately inRADand

OKLMA as the horizontal reflectivity structures are si-

multaneously more isolated and more consistent with the

mature supercell structures in the observation (arrows in

Figs. 4d and 5a,d,g,j). This improvement occurred because

the storms in RAD 1 OKLMA benefited from both the

earlier development of the hydrometeor fields through the

cloud analysis in RAD and the more targeted updraft

forcing of the LDA. Although RAD 1 OKLMA pro-

duces overall the best 30-min forecast, the reflectivity fields

FIG. 4. Horizontal cross sections of radar reflectivity at 4 km MSL from the 1-km resolution, 3D NMQ product interpolated onto the

local 3-km D01 domain at (a) 2030, (b) 2100, and (c) 2130 UTC 24 May 2011. (d)–(f) As in (a)–(c), but for the simulated reflectivities in

CTRL. By design of the assimilation procedure, 2030, 2100, and 2130 UTC correspond here to the 30-min; 1-h; and 1-h 30-min forecasts,

respectively. Legends for color and shadings are shown on the right.
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FIG. 5. As in Fig. 4, but for the main 3DVAR assimilation experiments with the NMQ observations shown again

for reference in (a)–(c). The short-term forecasts for OKLMA, RAD, and RAD1OKLMA are shown in (d)–(f),

(g)–(i), and (j)–(l), respectively. The 30-min (2030UTC), 1-h (2100UTC), and 1-h 30-min (2130UTC) forecasts are

shown from left to right.As in Fig. 3, black arrows highlight the convective elements specifically discussed in the text

and the horizontal black line shows the respective locations of the vertical cross sections shown in Fig. 6.
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and themain updrafts of these supercells start merging too

early (Figs. 5b,c,k,l), which is partly associated with the

earlier development of the hydrometeor fields in RAD

(Figs. 5a,d,g,j). Confirmed by a suite of additional ex-

periments below, one additional factor for this earlier

reflectivity merger in RAD is that the DA-induced

forcing is applied over a relatively broad grid volume

compared to OKLMA.

Figures 3g–l show additional sensitivity tests that high-

light some important aspects of the lightning and radar

data assimilation procedures. When the radial velocity

fields were not assimilated in the 3DVAR analysis (with

the cloud analysis activated: RAD-noVR), the storms are

overall weaker compared to RAD (cf. Figs. 3d and 3g).

This is because radial velocity assimilation was shown to

help improve the intensity of updraft and rotation (e.g.,

Gao et al. 2013). When the OKLMA data also were as-

similated in RAD-noVR, similar relative forecast im-

provements between RAD and RAD 1 OKLMA were

obtained (cf. Figs. 3d,e and 3g,h). If the cloud analysis is

not activated, the forecast is degraded owing to a delay in

the initiation and development of the observed storms

(Figs. 3d,i). Allowing the cloud analysis to adjust the qy
field or the relative humidity field based on the observed

reflectivities (RADQV; Fig. 3j) resulted in the largest

number of secondary updrafts and in even more disorga-

nized convection compared to RAD (Fig. 3d) and, thus,

compared to the observations (Fig. 3a). As confirmed by

an additional experiment described below (RAD45dBZ

in Fig. 3k), this was partially traced back to the use of a

relatively small reflectivity threshold (;15dBZ), which

caused the induced thermal (qy) forcing by the cloud

analysis to be applied over a relatively broad grid volume.

Consistent with this, the RAD-based experiment in

Fig. 3k demonstrates that it is feasible to mimic the

convective response (and forecasts) from the LDA

experiments by modifying specific key input parame-

ters in the 3DVAR and cloud analysis to confine and

enhance thermodynamic forcing near convective cores

(RAD45dBZ). The following procedure was devised to

achieve this: (i) restrict the kinematic forcing to areas

with reflectivity values$45 dBZ (instead of $15 dBZ),

(ii) set the horizontal decorrelation (influence) radius

to 1–2 grid points (i.e., 3–6 km) instead of 4–8 grid

points (12–24 km), (iii) set the vertical influence dis-

tance to 1–2 grid points (instead of 4); and (iv) allow the

cloud analysis to adjust qy based on reflectivity obser-

vations to promote thermodynamic forcing.

Last, because the pseudo-qy observations in the LDA

experiments are imposed over nearly the entire depth of

the domain (i.e., up to z5 15km), it is relevant to examine

how the short-term forecast would be impacted if the

pseudo-qy observations in the LDA were restricted to

lower levels (here, up to z5 5km). The results (‘‘OKLMA

ztop5km’’ in Fig. 3l) revealed nearly identical 1-h forecast

outcome compared to the base OKLMA experiment

(Fig. 3c). This is consistent with the bulk of thewater vapor

mass in the atmosphere being confined at lower levels.

In other words, the results in Fig. 3 indicate that the

differences in forecast behaviors between the LDA and

the radar data assimilation runs are directly attributable

to differences in the nature of the forcing mechanism(s)

between the assimilation procedures. The LDA induces

thermodynamic forcing in localized areas (Figs. 6b,d)

while this radar data assimilation procedure promotes a

combination of kinematic (three components of the wind

field) and thermodynamic (changes in u) forcing (Fig. 6c),

over a relatively broader area followed by the direct in-

sertion of hydrometeors through the cloud analysis. As a

consequence, downdrafts in the radar data assimilation

runs develop more quickly through sedimentation of pre-

cipitation while, in the LDA, locally strong updrafts must

first develop before precipitation is produced in the model

(Figs. 6e–h). The radar data assimilation affects mainly

areas of reflectivities $15dBZ while the LDA is applied

onlywhere the 10-minFED/ESD rates exceed a prescribed

threshold (small area in Fig. 2). Thus, consistent with the

results of RAD45dBZ (Fig. 3k), the thermal forcing (via

u adjustments) that ultimately promotes convection in

RAD is imposed over a relatively broader grid volume

than in the LDA runs. This explains why when the LDA is

performed in tandem with RAD, locally strong supercell

updrafts (Figs. 6d,h) are produced more readily and more

quickly, thereby yielding to more realistic supercellular

storm structures early in the forecast (Figs. 3c–e).

Because RAD does not directly adjust qy during the

assimilation, it is anticipated that the layer-averaged qy
betweenCTRLandRADbe identical.A closer inspection

reveals, however, slight differences in layer-averaged qv
between CTRL (Fig. 6a) and RAD (Fig. 6c). This is be-

cause in RAD, qy must be still slightly adjusted to ac-

commodate the changes in the perturbation u field.

As indicated earlier in this section, at 2100 UTC (1-h

forecast) all DA runs are able to reproduce at least

one distinct convective element with radar-observable

supercellular traits consistent with the NMQ observa-

tions (see arrows in Fig. 3). To provide a more complete

view of the structure of this cell, vertical cross sections

through a portion of the convective core and the anvil

(locations relative to the main updraft of this cell

shown in Figs. 3c–e) are shown in Figs. 6i–k. Overall, all

three cells reveal qualitatively similar reflectivity struc-

tures with one single dominant updraft extending up to

the tropopause and with an anvil structure reminiscent of

the weak echo overhang. As alluded to earlier, because the

RUC data used herein have a model top set at 100hPa

4384 MONTHLY WEATHER REV IEW VOLUME 144

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:49 PM UTC



(;15.5km), the tropopause and simulated cloud tops are

shallower (;13.5km) than would be expected for strong

supercells. While a model top of ;20km (50hPa) would

have beenmore appropriate to properly resolve the vertical

extent of deep moist convection, the RUC data used to

initiate the model environment at the time when the in-

cipient storms are starting to develop are sufficient to

demonstrate that both the LDA and radar DA can force

the initiation of observed convection.

Informed by these results, it is of interest to determine if

the supercell radar characteristics seen in some of the

simulated cells are consistent with improvements in tor-

nadic potential. The tornadic potential of the observed and

simulated storms is inferred by examining and comparing

the tracks of the radar-derived 3–6-km maximum azi-

muthal shear associated with the observed meso-

circulations (Fig. 7a) and the maximum updraft helicity

in the model (Figs. 7b–f). Since the dominant midlevel

FIG. 6. (a)–(d) As in Fig. 3, but for the layer-averaged water vapor mass qy between z’ 3 and 10 km MSL at 2000 UTC. (e)–(h) As in

(a)–(d), but for the surface perturbation potential temperature at 2100 UTC overlaid with the layer-averaged vertical velocities (black

contours in 10m s21 increments) between z’ 3 and 10 kmMSL.Results are shown from (a),(e) CTRL; (b),(f)OKLMA; (c),(g) RAD; and

(d),(h) RAD 1 OKLMA. Respective legends for the color shadings for the first two rows are shown on the right. (i)–(k) Vertical cross

sections of radar reflectivity fields and vertical velocities (black contours in 10m s21 increments) at the locations denoted by the black

horizontal lines in Figs. 3 and 5 for (i) OKLMA, ( j) RAD, and (k) RAD 1 OKLMA.
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mesocirculation would be expected to interact with the

main updraft of each observed storm to produce a local

updraft helicity maximum, the observed azimuthal shear

tracks may be qualitatively compared to the modeled

updraft helicity tracks. Note that only the storms in

northwestOklahoma are active at the time of the 3DVAR

initialization (i.e., 2000 UTC). The simulated helicity

tracks $100m2 s22 in CTRL are absent in north-central

Oklahoma because of the lack of simulated storms there

(Figs. 4d–f and 7b). Conversely, CTRL exhibits strong,

persistent helicity tracks in the southern portion of the

state, where the model was able to initiate some of the

FIG. 7. Paths of significant midlevel mesoscale rotations in storms on 24–25 May 2011. The merged rotation tracks,

which are depicted by the local maximum azimuthal shear (31023 s21) in (a), were generated by B. Smith (NSSL)

using data from all regional radars including KVNX, KINX, KTLX, andKFDR via NSSL’sWDSS-II package (Smith

andElmore 2004; Lakshmanan et al. 2007; Smith et al. 2016). (b)–(f)As in (a), but for the simulatedmaximum updraft

helicity tracks (m2 s22) for (b) CTRL, (c)OKLMA, (d) RAD, (e)RAD1OKLMA, and (f)ENTLNexperiments. The

large black dot denotes the location of Oklahoma City. The location of the tornadoes near El Reno (ELR; Houser

et al. 2015), and Canton (CNT; Kosiba et al. 2012) and half-hourly isochrones of observed mesocirculation positions

are also displayed in (a). The overall time period of the tracks in all panels are shown for the duration of the simulation

(2000 UTC 24 May–0000 UTC 25 May 2011). Color-fill legends are shown in (a) for the observations and in (b) for the

simulations.
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observed storms while overestimating their intensity

(Figs. 4d–f and 7b). As a consequence of the forecast

improvements in northwest Oklahoma documented in all

the base 3DVAR assimilation experiments (Fig. 5), the

respective simulated helicity tracks there (Figs. 7c–f) also

exhibit noticeable improvements when evaluated against

the NSSL rotation tracks in Fig. 7a. In particular, all as-

similation experiments appear to favor supercells in

north-central Oklahoma. Among these tracks in northern

Oklahoma, all assimilation experiments produce a dis-

tinct track northwest of the Oklahoma City metro area

(storm highlighted by the horizontal black line in

Figs. 3c–e), which arguably appears broadly consistent

with the long-track,EF-5ElReno tornado (e.g., Tanamachi

et al. 2015; Houser et al. 2015). In terms of strength, the

RAD 1 OKLMA simulation produces the strongest hel-

icity track northwest of Oklahoma City (Fig. 7e). None of

the simulations showed tracks that would be consistent

with the EF-3 tornado near Canton,Oklahoma (labeled as

‘‘CNT’’ in Fig. 7a).

The base experiments assimilating radar and/or light-

ning data (Table 1) all produced rainfall amounts that

remained within the ranges of the stage-IV rainfall ac-

cumulation estimates (i.e., #50–60mm, Fig. 8). No sig-

nificant wet biases are present (not shown), unlike the

majority of the forecast days analyzed in F15, which used

the simple nudging technique of F12a. As documented

earlier in Fig. 5, because RAD (and, by extension,

RAD 1 OKLMA) is able to initiate the observed con-

vection earlier than OKLMA, the 5- and 10-mm accu-

mulated precipitation contours extend farther west, and

thus appear in better accord with the stage-IV rainfall

estimates (Figs. 8a,c,d). The accumulated rainfall in Fig. 8

reveal, however, one noteworthy limitation common to

all the simulations; namely, none were able to produce

the observed two nearby parallel lines of heavier rainfall

exceeding 20mm oriented southwest–northeast near

central Oklahoma. Rather, the assimilation experiments

produced similar rainfall totals in the north-central por-

tion of the state. The time sequences of radar reflectivity

fields in both the observations and themodel (Figs. 4 and 5)

revealed that this is caused in part by the tendency for

the model to produce supercells moving faster than

observed and with a storm motion vector directed more

toward the north (e.g., Clark et al. 2012).

To provide a metric to quantify the performance of

accumulated precipitation estimates from the DA exper-

iments in the telescoped domain of Fig. 8, neighborhood-

based fractions skill scores (Roberts and Lean 2008)

relative to the stage-IV observations were computed for

CTRL and all the base DA experiments for neighbor-

hood radii ranging from 1 to 45km (i.e., point based up

to 15 grid points). This skill score was selected because

it is an attractive measure of skill on convection-allowing

grids (Mittermaier et al. 2013). In contrast to the

neighborhood-based equitable threat score (ETS; Clark

et al. 2010), the fractions skill score provides a quantita-

tive measure of goodness and usefulness, which adds

to the understanding of true forecast skill. Because of

the large displacement errors in the accumulated pre-

cipitation relative to the observations seen in all the DA

runs (Fig. 8), the skill scores are not deemed ‘‘useful’’

(i.e., ,0.5; Roberts and Lean 2008) even for relatively

large neighborhood radii (i.e., 30 and 45 km) and for

sufficiently small accumulated precipitation thresholds

(i.e., #5mm; Fig. 9). Note that it is indeed feasible to

achieve useful scores (.0.5)when the neighborhood radii

are allowed to exceed 48km (not shown). These were not

considered, however, because of the relatively small size

of the telescoped domain in Fig. 8 and because this did

not change the qualitative aspect of the analysis below.

Overall, the skill scores in Fig. 9 corroborate the quali-

tative analysis of the accumulated precipitation fields in

Fig. 8: Although all DA experiments fail to reproduce the

accumulated precipitation maxima in central Oklahoma,

the faster, more broadly distributed development of

precipitation in the RAD-based experiments results in

systematically slightly larger skill scores than those of the

LDA runs at hour 1 and later in the forecast, except at

forecast hour 2 (Fig. 9). The skill scores of all DA ex-

periments show a slight improvement overCTRLoverall,

except at hour 4. Note, however, that the improvements

in skill scores are likely limited by errors in stormmotion,

and somay not fully reflect the arguably larger qualitative

improvements to the forecasts. Given the overall simi-

larity in rainfall skill scores in allDAexperiments (Fig. 9),

it appears that despite the significant differences in storm

structures documented earlier in Figs. 3–5, the type of

DA does not make much difference in terms of short-

term forecasts of accumulated rainfall.

5. Summary

An efficient method for assimilating total lightning

data information within a cloud-scale three-dimensional

variational technique (or 3DVAR) has been developed

using the ARPS 3DVAR system running on the WRF-

ARW model. This study describes the method and

evaluates results from assimilating lightning and/or ra-

dar data for the tornado outbreak on 24–25 May 2011.

The philosophy behind this 3DVAR lightning data as-

similation (LDA) method follows the basic concept of

the nudging (direct insertion) method presented in F12a

and subsequently tested in F14 and F15. At observed 2D

lightning locations, the technique imposes an increase in

water vapor mass toward saturation within a confined
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layer to locally increase the virtual potential temperature

perturbation, and hence, thermal buoyancy (Houze 1993;

Braun 2002; Fierro et al. 2012b).

Assimilating either radar or lightning data produced

better forecasts than were produced by the control ex-

periment, which assimilated neither type of data. These

forecast improvements include radar reflectivity fields,

helicity tracks, and accumulated precipitation amounts

that are more consistent with observations, particularly

northwest of the Oklahoma City metropolitan area.

When only radar reflectivity and radial velocity are as-

similated, the improvements during the first 30–45min of

simulation (forecast) are better overall than the im-

provements from assimilating lightning data alone. This is

because the radar assimilation runs initiate storms earlier

than the LDA runs do, and so depict the initial storms

more accurately, with higher skill scores for the amount and

location of accumulated precipitation, especially early in the

forecast. The earlier merger in RAD was partially traced

back to the small cutoff reflectivity threshold (15dBZ)

typically used to exclude nonmeteorological echoes from

the 3DVAR analysis. When a larger reflectivity threshold

was used (45dBZ), the analysis and subsequent short-term

forecast were very similar to those of the LDA.

At the 1-h forecast time, however, assimilating either

theOK-LMAor the ENTLN lightning data reproduces

storm-scale structures in better agreement with the

observed storms than the structures produced by as-

similating radar data alone. In particular, the LDA

storms are characterized by isolated strong rotating

updrafts with well-defined supercell characteristics

including hook echo appendages, V-shaped reflectivity

FIG. 8. Horizontal cross sections of accumulated precipitation fields (in mm) starting at 2000 UTC 24 May and ending at 0000 UTC

25 May 2011 over the geographical area of Fig. 2 for (a) the stage-IV data interpolated onto the local 3-km domain, (b) CTRL,

(c) OKLMA, (d) RAD, (e) RAD 1 OKLMA, and (f) ENTLN.
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cores, and mesocyclonic rotations collocated with the

hook echo and main updraft. Because the storms in

OKLMA initiate and develop later than in RAD, the in-

dividual supercells merge later in the forecast in the LDA

runs, behavior more consistent with that of the observed

storms.

Assimilating a combination of radar and lightning data

produces better short-term forecasts than are produced

by assimilating either radar or lightning data alone, as the

model then resolves individual supercell structures more

accurately. This is caused by the forecast simultaneously

benefiting from the earlier development of the hydro-

meteor fields by the radar assimilation/cloud analysis and

the more targeted updraft forcing from the LDA.

Additional sensitivity experiments (not shown) dem-

onstrated that these results generally held when the

Thompson et al. (2004) microphysics scheme was em-

ployed in lieu of theHong and Lim (2006) single-moment

6-class scheme (WSM6) used in this study. The main

differences worth documenting are that the storms

simulated with the Thompson scheme tended generally

to exhibit more isolated reflectivity cores characterized

by reflectivity maxima exceeding observed values by as

much as 10dB.

This study also documents an advantage of assimi-

lating lightning data within the 3DVAR framework over

the simple nudging scheme of F12a, in that the 3DVAR

method could impose larger increases inwater vapormass

at a single time. In the present case, this enabled con-

vection to develop faster and improved the representation

of the supercellular convection in the short-term fore-

casts. In F12a, F14, and F15, qy had to be increased in

small increments over a shallow layer, because the sudden

introduction of too much mass into the model via direct

insertion occasionally resulted in mass–wind imbalance

and, ultimately, in computational instability.

In summary, despite a slower development of storm size

relative to the assimilation of radar data, the improve-

ments in the placement and evolution of the convection

over the control experiment when two-dimensional

FIG. 9. Fractions skill scores (FSS) of the simulated hourly accumulated precipitation fields relative to the stage-

IV observations within the telescoped domain shown in Fig. 4 for forecasts starting at 2000UTC 24May and ending

at 0000 UTC 25May 2011 for the CTRL run and the four base data assimilation experiments listed in Table 1. The

FSS using a neighborhood radius of 45 km are shown for an hourly accumulated precipitation threshold of (a) 2.5

and (b) 5mm. (c),(d) As in (a),(b), but for a neighborhood radius of 30 km.
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lightning densities were assimilated remain noteworthy.

This result is particularly encouraging for regions charac-

terized by limited coverage of the WSR-88D network,

such as mountainous areas or over oceans, or due to

temporary loss of a radar. Further refinements of this

LDA scheme will consider selected regions of the

United States characterized by either ‘‘good’’ versus

‘‘poor’’ radar coverage, to determine optimal weights

that balance the value added by lightning data against the

value added by radar data. Weights could for instance be

dynamic, to bemodified in real time when the assimilated

data sources temporarily change, such as by the loss of a

critical radar.

Note that other methods for addressing the loss of a

radar are possible. Gao et al. (2016) developed a new as-

similation package, now being tested, that introduces en-

semble information into this 3DVAR system, so that even

if only radial velocity data are assimilated, all model var-

iables are adjusted based on ensemble covariances.

Although the LDAdescribed here provides better storm-

scale detail than provided by surface-based precipitation

methods, future work should address present limitations

of the LDA, as well. For instance, (i) the density rate

cutoff thresholds used to activate the LDA miss lower

flash rate storms in the domain during the assimilation

and (ii) the use of a fixed top height to saturate grid col-

umns ignores seasonal and geographical variations. Fur-

ther research could also evaluate whether, at observed

lightning locations, adjusting both the potential temper-

ature and vapor mixing ratio profiles toward the envi-

ronmental most unstable moist adiabat adds value to the

forecast and further hastens the initiation of the observed

convection. The rationale would be that the moist adiabat

represents a direct linkage between the bulk local total

lightning and the vertical profile of updraft buoyancy (e.g.,

MacGorman et al. 1989).

Although the flash or source density data herein were

interpolated onto the original resolution of the model

grid (i.e., 3 3 3 km2), adapting this LDA method to

pseudo-GLM resolutions (e.g., 8 3 8 km2) is straight-

forward. When GLM data become available, hopefully

by late 2016, future studies will place emphasis on the

assimilation of pseudo-GLM flash extent density data

coupled with some of the aforementioned refinements

to the LDA method.
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In all the lightning data assimilation (LDA) experiments of Fierro et al. (2016, hereafter

F16), it is stated that, outside the observed lightning areas, the pseudo-observations for

water vapor mass (qy) were not created because these grid points are considered as non-

updraft areas. This implied that pseudo-qy outside the lightning areas were treated as

missing values, which was the original intent. In the 3DVAR package, however, the missing

pseudo-qy outside the lightning areas were inadvertently assigned a zero innovation instead

of a missing value. Because of this, all LDA-based experiments were assimilating zero in-

novations for qy outside the lightning areas, forcing the analysis for qy close to the back-

ground values there. Consequently, the information of pseudo-qy inside the lightning areas

(set to the saturation qy with respect to liquid) cannot be spread out to the nonlightning

areas, constraining the impact of the LDA. While setting the qy innovations to zero in

nonlightning areas could also be a valid approach to assimilate lightning, the fact that the

radar data assimilation experiment (RAD) treated the radial winds asmissing values outside

reflectivity areas (i.e., no radial wind observations for dBZ # 15–20) lead to inequitable

comparisons between the original RAD and LDA experiments.

To illustrate this, an auxiliary experiment treating pseudo-qy as missing values outside

lightning areas and using the same horizontal decorrelation length scalesR as in F16 (Table 1)

was performed and shown in Fig. 3e. As can now be seen, when correctly assigning missing

pseudo-qy values in nonlightning areas, the 3DVAR analysis spreads the impact of the

pseudo-qy from inside the lightning areas (set to saturation qy) to nonlightning areas (Fig. 6d).

This has themain effect of producing an analysis and 1-h forecast that are arguably worse than

the original RAD experiment (Figs. 3d,e). To produce results that are qualitatively compa-

rable to the original LDAexperiments (i.e., more targeted updraft cores),Rmust therefore be

set to smaller values as illustrated by Figs. 3c and 3f and Figs. 6b and 6e for the OKLMA

experiment (Table 1). Figures 3g and 6f show that when the same smallR values are chosen in
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RAD, it is able to produce isolated convective cells in the analysis as well. Last, for these same

smallerR values, Fig. 3h confirms that when the LDA is applied in tandemwithRAD, the 1-h

forecast is further improved relative to when only lightning (Fig. 3f) or radar data (Fig. 3g)

are assimilated. While using R # 10 km may be optimal for the LDA, it can be arguably

said that larger R values (.10 km) would benefit radial velocity assimilation (Figs. 3d,g).

That is because radial velocity has a larger representative horizontal scale than the

lightning data. Consequently, to effectively assimilate both types of observations, a mul-

tiscale approach, wherein different length scales are used for different types of observa-

tions, should be envisaged.

Despite this ambiguity, the additional experiments herein confirm that the general proof-

of-concept of the 3DVAR LDA method in F16 remains valid. It is relevant to also clarify

that the vertical decorrelation length scale used in all the experiments is 4 grid points, and

not 12 km as incorrectly stated in F16.
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TABLE 1. The left column lists the nomenclature/abbreviations used for the simulations/experiments described herein. The second

column from the left briefly describes the type of experiments. The second column from the right indicates the type of data that were

assimilated, with ‘‘dBZ’’ standing for radar reflectivity and ‘‘Vr’’ for radial velocity. The right column shows which model variable(s) is

(are) impacted by the respective assimilation experiments with the symbols used to identify those variables bearing their usual

meaning. For convenience, the first three rows list the original control run (CTRL), original lightning data assimilation experiment

using the Oklahoma Lightning Mapping Array (OK-LMA) data, and the original radar data assimilation experiment (RAD). The

first (second) value ofR corresponds to the horizontal decorrelation length scale used during the first (second) 10-iteration pass of the

3DVAR analysis.

Experiment Description Data assimilated Model variables impacted

CTRL Original control run None None

OKLMA Original lightning

assimilation run

OK-LMA flash extent

density rates

qy (LCL-15 km)

RAD Original radar data

assimilation run

Vr and dBZ qr, qg, qi, qs, qh, u, y, w, u

H24 OKLMA Lightning assimilation run

with R 5 24, 12 km

OK-LMA flash extent

density rates

qy (LCL-15 km)

H6 OKLMA Lightning assimilation run

with R 5 6, 3 km

OK-LMA flash extent

density rates

qy (LCL-15 km)

H6 RAD Radar data assimilation run

with R 5 6, 3 km

Vr and dBZ qr, qg, qi, qs, qh, u, y, w, u

H6 RAD1OKLMA Lightning 1 radar data

assimilation run with

R 5 6, 3 km

Vr and dBZ, OK-LMA flash

extent density rates.

qy (LCL-15 km), qr, qg, qi,

qs, qh, u, y, w, u
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FIG. 3. Horizontal cross sections at 2100 UTC (1-h forecast) at z5 4 kmMSL overlain with the 8m s21 vertical velocities (blue contour)

and relative vertical vorticities of 1023 s21 (solid black) for (a) the NMQ observations, (b)–(d) selected original base experiments in F16,

and (e)–(h) additional experiments described in Table 1.
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FIG. 6. Layer-averaged water vapor mass (qy) between z ’ 3 and 10 km MSL at 2000 UTC. Results are shown from left to right for the

original (a) CTRL, (b) OKLMA, and (c) RAD experiments followed by (d)–(g) the additional experiments described in Table 1.
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